Skip to content

Model Configuration

Learn how to configure and customize models for optimal performance in medical AI evaluation. The loader_args that are defined on the ModelMeta can be tweaked

Control model behavior with precision:

Terminal window
# Conservative generation for medical accuracy
karma eval --model qwen --model-path "Qwen/Qwen3-0.6B" \
--datasets openlifescienceai/pubmedqa \
--model-kwargs '{
"temperature": 0.1,
"top_p": 0.9,
"top_k": 50,
"max_tokens": 512,
"enable_thinking": true,
"seed": 42
}'
# Creative generation for medical education
karma eval --model qwen --model-path "Qwen/Qwen3-0.6B" \
--datasets medical_education_dataset \
--model-kwargs '{
"temperature": 0.7,
"top_p": 0.95,
"max_tokens": 1024,
"enable_thinking": false
}'
ParameterRangeDescriptionMedical Use Case
temperature0.0-1.0Randomness control0.1-0.3 for diagnostic accuracy
top_p0.0-1.0Nucleus sampling0.9 for balanced responses
top_k1-100Top-k sampling50 for medical terminology
max_tokens1-4096Output length512 for concise answers
enable_thinkingbooleanReasoning modetrue for complex cases
seedintegerReproducibilitySet for consistent results
Terminal window
# Thinking mode for complex medical reasoning
karma eval --model qwen --model-path "Qwen/Qwen3-0.6B" \
--datasets openlifescienceai/pubmedqa \
--model-kwargs '{
"enable_thinking": true,
"thinking_depth": 3,
"temperature": 0.2,
"max_tokens": 512
}'
# Fast inference mode
karma eval --model qwen --model-path "Qwen/Qwen3-0.6B" \
--datasets openlifescienceai/pubmedqa \
--model-kwargs '{
"enable_thinking": false,
"temperature": 0.1,
"max_tokens": 256,
"use_cache": true
}'
Terminal window
# Medical accuracy optimization
karma eval --model medgemma --model-path "google/medgemma-4b-it" \
--datasets openlifescienceai/medmcqa \
--model-kwargs '{
"temperature": 0.05,
"top_p": 0.8,
"repetition_penalty": 1.1,
"max_tokens": 400,
"medical_mode": true
}'
Terminal window
# IndicConformer language-specific configuration
karma eval --model "ai4bharat/indic-conformer-600m-multilingual" \
--model-path "ai4bharat/indic-conformer-600m-multilingual" \
--datasets "ai4bharat/indicvoices_r" \
--model-kwargs '{
"language": "Hindi",
"chunk_length": 30,
"stride": 5,
"batch_size": 1,
"use_lm": true
}'
# Whisper optimization
karma eval --model openai-whisper \
--datasets medical_audio_dataset \
--model-kwargs '{
"model": "whisper-1",
"language": "en",
"temperature": 0.0,
"condition_on_previous_text": true,
"compression_ratio_threshold": 2.4
}'